
This document demonstrates some of the features of FigPut. It consists
of a series of snippets of exposition. There are a few simple examples – Bézier
curves, the ellipse and diffiusion – followed by a more extended example about
gears.

1 Example: Bézier Curves

Bézier curves are a convenient way of defining curves in the plane. They can
be defined using Bernstein polynomials. The Bernstein polynomials of degree n
are defined by

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, . . . , n.

A cubic Bézier curve is a linear combination of the Bernstein polynomials of
degree 3:

C(t) =

3∑
i=0

piB
3
i (t),

where the four pi are points in the plane and t is limited to [0, 1]. This can be
written as the pair of equations (x(t), y(t)) = C(t), where

x(t) = x1 · (1− t)3 + x2 · 3(1− t)2t+ x3 · 3(1− t)t2 + x4 · t3

y(t) = y1 · (1− t)3 + y2 · 3(1− t)2t+ y3 · 3(1− t)t2 + y4 · t3,

(xi, yi) = pi and the indices on the pi have been shifted. We have C(0) = p1 and
C(1) = p4 and the other two points act as “controls.” See Figure (1), noting
that the line determined by the pair of points controlling each end of the curve
is tangent to the corresponding end-point of the Bézier curve.

Figure 1: A Cubic Bézier Curve
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Figure 2: Tacks-and-string Ellipse

2 Example: Drawing an Ellipse

One way to define an ellipse is illustrated by Figure (2). Choose two points, F1

and F2 (the foci), and fix some k > 0. The ellipse is then the set of points, P ,
satisfying

d(P, F1) + d(P, F2) = k,

where d(A,B) is the distance from A to B.
The figure makes it clear why this is sometimes refered to as the “tacks and

string” definition. Imagine tacking each end of a bit of string, of length k, to
the two foci; then tracing out the ellipse by holding a pencil at the limit of what
the string will allow as the pencil travels about the foci.

3 Example: Diffusion

The concept of diffusion is illustrated by Figure (3). Statistical mechanics and
Boltzmann’s equation explain concepts like heat transfer and the gas laws by
modeling the random motion of many particles. These equations may be difficult
to grasp, but an intuitive understanding is not difficult. At time zero, there is
some set of particles on the left half of the box, each of which is moving with
some randomly distributed momentum. The divider is removed and, over time,
the particles distribute themselves more evenly throughout the box.

2



Figure 3: Diffusion and Boltzmann’s Equation

4 Example: Gears

Gears like those in Figure (4) might work after a fashion, but it’s rare to see
such gears in anything other than a child’s toy. As a rule, gears take the form
shown in Figure (15). Why?

Figure (5) illustrates the fundamental problem of gear design, using a par-
ticularly bad design. The “gears” here have been reduced to something more
like spokes. The gear on the right rotates counter-clockwise at a constant rate
and drives the gear on the left. As the gears rotate, the rate of rotation of the
gear on the left will not be constant; at some positions, the left gear is nearly
stationary and at other positions, it rotates much faster than the gear on the
right. In addition, the point of contact slides, generating friction and wear.

Figure 4: Crude Gear Designs
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Figure 5: Maybe the Worst Possible Gears?

Understanding how to design gears without the kind of surging motion and
wear inherent in the gears of Figure (5) explains why nearly all modern gears
take the form of Figure (15). The most glaring problem with the spoke-like
gears is the way their motion varies – imagine riding in a car with a gear-train
based on such gears!

Gears typically have what’s called conjugate action, meaning that the ratio
of their rates of rotation is constant, with no surging or lagging. Sometimes
this is also called the fundamental law of gearing, although it would be more
accurate to call it a “commonly desired feature,” rather than a “law.” Arranging
the teeth of gears so that they have conjugate action is surprisingly tricky.

4.1 The Involute

Figure (6) shows a cam and a lever-arm pushing against each other, causing them
to rotate about their respective axes. Imagine that the cam rotates counter-
clockwise, pushing the arm downwards. There are several crucial observations:

1. The two curves must be tangent at the point of contact.

2. The force from one part to the other must be directed along a line per-
pendicular to the two curves at the point of contact. Call this the line of
action.

3. Let P be point where the line of action intersects the line connecting the
two centers of rotation. This is called the pitch point. The instantaneous
ratio of the two rates of rotation is equal to the ratio of the distances from
P to each of the centers of rotation.

In conclusion, if two gears are to have conjugate action, then the pitch point
must be fixed.

See Figure (7). Imagine a string wrapped around the circle, with one end
fixed to the circle and a pencil at the other end. As the string unwraps from the
circle, the pencil traces out a curve called the involute. The line determined by
the string is obviously tangent to the circle at the point at which it meets the
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Figure 6: Basic Constraints on Gears

circle. The line is also perpendicular to the involute because, at each instan-
taneous point of rotation, the involute is locally an arc of the circle formed by
the string. For a circle of radius r centered at the origin, the involute can be
parameterized by i(t) = (ix(t), iy(t)), where

ix(t) = r(cos t+ t sin t)

iy(t) = r(sin t− t cos t)

As we will see, the notable thing about the involute is that when gear teeth
take the form of an involute, the pitch point is constant throughout the gears’
motion.

Figure (8) shows two disks acting as gears by simple friction. The circle of
each such disk is called the pitch circle (where they come in contact is the pitch
point). The centers of these disks are joined by the line of centers, and the
distance between these centers is the center distance. Now imagine two slightly
smaller and concentric circles, called the base circles. These base circles will be
used to form involutes, and these involutes will be the profiles of the gear teeth.

Figure 7: The Involute of a Circle
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base circle

pitch circle

Figure 8: Base Circle and Pitch Circle

Figure (9) shows an enlarged view of the two base circles of Figure (8),
without the pitch circles. Imagine that a piece of string is tightly wrapped
around one base circle, extends over to the other base circle, and is wrapped
around it too. As the disks rotate, the string unwinds from one base circle and
is taken up by the other base circle. There is a fixed point on the string that
represents the point of contact between two teeth. This point traces a path that
is an involute relative to either circle. These involutes define the shape of the
mating tooth profiles. The line of action is coincident with the string, and the
two gears have conjugate action.

A fortunate feature of the involute is that the teeth can be truncated at

Figure 9: Rotation Traces Involutes
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their perimeter, or their widths may be varied, yet the two gears still have
conjugate action; the teeth come into contact sooner or later as they rotate,
but the point of contact follows the same line of action. If the center distance
changes, then the line of action also changes, but the tooth form (the involute)
remains the same, and the gears still have conjugate action, though there will
be some backlash and additional friction between the teeth.

What remains is the resolution of many practical issues: the interplay of
gear radius, tooth size, number of teeth and the like.

The two main methods of gear specification are metric (ISO) and inch
(AGMA), and the two systems use slightly different fundamental quantities to
specify a given gear. These are the basic parameters used to specify off-the-shelf
gear profiles.

• ϕ, pressure angle

• N , number of teeth

• m, module (for metric gears)

• pd, diametral pitch (for inch gears)

There are many additional terms and measurements. In fact, off-the-shelf
gears are typically specified in a way that makes various assumptions. Addi-
tional parameters that influence gear design are

• pc, circular pitch

• d, pitch diameter

• rp, pitch radius

• rb, base radius

• a, addendum

• b, dedendum

The pressure angle, ϕ, is the angle between the line of action and the per-
pendicular to the line of centers. In Figure (9), the pressure angle is roughly
35◦. If two gears are to mesh without backlash, then they must use the same
pressure angle. At one time, 14.5◦ was a commonly used pressure angle, but
20◦ is the current standard. A more obviously important choice is the number
of teeth, N . Since the number of teeth determines the ratio of any gear train,
this is a crucial choice, but it raises the question of how to fit N teeth on a given
gear.

The tooth-to-tooth distance, as measured along the arc of the pitch circle,
is the circular pitch, pc, and the corresponding diameter is the pitch diameter,
d. Since Npc is the circumference of the pitch circle, we have

pc =
πd

N
.

This is the inches or mm per tooth, measured along the circumerence. In prac-
tice, AGMA gears are specified by the diametral pitch,

pd =
N

d
.
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This is the teeth per π inches, and seems like an odd choice, but that’s how
it’s done. Metric gears are specified by their module, m, which is stated in
millimeters, and is

m =
d

N
=

1

pd
.

The actual tooth-to-tooth distance is thus πm. The values around which the two
systems, ISO and AGMA, are standardized are not compatible. For example, a
module of m = 4 corresponds to a diametral pitch of

pd =
25.4

4
= 6.35,

which is not a standard AGMA size.
The profile of each gear tooth is an involute, and determining the involute

requires that the base circle be known. See Figure (10), in which the outer
circle is the pitch circle and the inner circle is the base circle. Let rp be the
radius of the pitch circle, and rb be the radius of the base circle. Because the
angle determined by where the line of action meets the base circle is equal to
the pressure angle, ϕ, we have

rb = rp cosϕ.

The module or diametral pitch determines the tooth-to-tooth distance, but
it doesn’t determine how much of that space is solid tooth and how much is
the space between teeth. The ensure that there is no backlash, the thickness
of each tooth, as measured along the arc of the pitch circle, should be equal to
the space between teeth – for practical reasons (lubrication), the gap between
teeth is often made one or two thousandths of an inch wider than this. Again,

Figure 10: Base Circle from Pitch Circle
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Figure 11: Angle Subtended by Involutes.

these distances are as measured along the arc of the pitch circle. In practice, it
is easier to work with the angles subtended by these arcs.

There is one further issue to resolve. See Figure (11), which shows a portion
of a base circle and slightly larger pitch circle, with an involute. What’s needed
is the measure of the small angle relative to the x-axis at which the involute
meets the pitch circle. The involute is parametrized by

i(t) = rb(cos t+ t sin t, sin t− t cos t) = (ix(t), iy(t)),

and the involute meets the pitch circle when |i(t)|2 = r2p. We have

|i(t)|2 = r2b
[
(cos t+ t sin t)2 + (sin t− t cos t)2

]
= r2b

[
cos2 t+ 2t cos t sin t+ t2 sin2 t+ sin2 t− 2t cos t sin t+ t2 cos2 t

]
= r2b (1 + t2),

and |i(t)| = rp implies that

t =

√(
rp
rb

)2

− 1 =

√(
rp

rp cosϕ

)2

− 1 = tanϕ.

The angle made by the line through i(t) with the x-axis is α, where1

tanα = iy(t)/ix(t).

We now have enough information to begin laying out gear profiles. Suppose
that ϕ, N and m (or pd) are given. There will be N involutes runing one way,
and N running the other way. Relative to the base circle, the tooth-to-tooth
distance subtends an angle measuring 2π/N . Half of this is solid tooth, and half
is the gap between teeth, with an adjustment for α. So each solid tooth subtends
the angle π/N + 2α, and each gap subtends the angle π/N − 2α. Figure (12)
shows the result for ϕ = 20◦, N = 15 and m = 4.

1There seems to be no standard notation for this angle. In fact, I have found no mention
of this issue in any common reference, even though it’s crucial for determining the profile.
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Figure 12: Basic Gear Form.

There is a glaring problem with Figure (12): the involutes continue beyond
the point where the two sides of each tooth meet. If the aim is to program a
milling machine to cut these profiles, then that’s not a big deal – the machine
will be cutting a bit of air beyond the end of each tooth – but it would be nice
to know exactly where the two sides meet. Suppose that a tooth is symmetric
about the x-axis so that the two sides meet at y = 0. Let Rθ be the rotation
matrix through angle θ. Then the involute below the x-axis is parameterized
by R−θi(t), where θ = α+π/2N . In particular, we want to find t such that the
y-coordinate of R−θi(t) is equal to zero. We have

R−θ i(t) =

(
cos θ sin θ
− sin θ cos θ

)(
rb(cos t+ t sin t)
rb(sin t− t cos t)

)
,

and we require t such that

−rb sin θ(cos t+ t sin t) + rb cos θ(sin t− t cos t) = 0

or
sin t− t cos t

cos t+ t sin t
= tan θ.

Unfortunately, finding such t requires the use of numerical methods of approx-
imation. Making use of something like Newton-Raphson to determine t, we
obtain Figure (13).

Figure (13) still doesn’t look quite right. Gears don’t typically have such
pointy-ended teeth, and the gaps between the teeth don’t seem deep enough in
Figure (13). There are two more parameters to adjust for this: the addendum,
a, and dedendum, b. The addendum is the distance above the pitch circle to
which the teeth extend; when a tooth reaches a radius of rp + a, it is truncated
and given a flat top (the so-called top land). The dedendum is the depth below
the pitch circle to which the gap between teeth is cut; so the gaps are cut to
a radius of rp − b (forming the so-called bottom land). While the parameters a
and b could take any value, they have been standardized to

a = m and b = 1.25 m.
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Figure 13: Corrected Gear Form.

Under the AGMA system (inches), these are

a = 1/pd and b = 1.25/pd.

Teeth have been standardized this way because the tips of pointy-ended teeth are
prone to burring, while cutting the gaps more deeply allows for fuller engagement
of the teeth. Figure (14) shows the same gear as in Figure (13), but with the
addendum and dedendum circles.

It is now possible to specify the standard tooth profile for a gear with arbi-
trary parameters, as in Figure (15). The value for t to which the parameteriza-
tion of the involute extends must be adjusted. Instead of extending out to the
value of t0 for which

sin t0 − t0 cos t0
cos t0 + t0 sin t0

= tan θ,

t must be chosen so that |i(t)| = rp + a. This is simpler to determine since θ no
longer plays a role. As in an earlier calculation, we must have

(rp + a)2 = |i(t)|2

= r2b (1 + t2)

Figure 14: Gear with Addedenum and Dedendum Circles.
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Figure 15: Standard Gear Profile.

or

t =

√(
rp + a

rb

)2

− 1 =

√(
rp + a

rp cosϕ

)2

− 1.

Of course, a can’t be chosen to produce a value for t larger than t0.
When drawing gears with a given addendum, it can be useful to know the

angle subtended by the top land. As noted above, the angle subtended relative
to the base circle by each tooth is π/N + 2α. Let td be the value for t at which
the top land begins. Each side of the tooth, from the base circle to the top land
subtends the angle β, where tanβ = iy(td)/ix(td). The top land thus subtends
the angle π/N + 2α− 2β.
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